実解析第2同演習・演習第3回

2022年10月28日

問 A-1

 $X = \{0, 1, 2, 3\}, \mathcal{M} = \{\emptyset, \{0, 1\}, \{2, 3\}, X\} \ \text{ξ}$

- (1) (X, \mathcal{M}) は可測空間であることを示せ.
- (2) $\mu: \mathcal{M} \to \mathbb{R}$ を $\mu(\emptyset) = 0$, $\mu(\{0,1\}) = 1$, $\mu(\{2,3\}) = 0$, $\mu(X) = 1$ と定めたとき, μ は測度であることを示せ.
- (3) (X, \mathcal{M}, μ) は完備ではないことを示せ.
- (4) (X, \mathcal{M}, μ) の完備化 $(X, \overline{\mathcal{M}}, \overline{\mu})$ を求めよ.

問 A-2

測度空間 $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ を $\mu(A) := \#A (\#A)$ は A の元の個数)で定める.

- (1) $\mathcal{P}(\mathbb{N}) \otimes \mathcal{P}(\mathbb{N}) = \mathcal{P}(\mathbb{N} \times \mathbb{N})$ を示せ. (ヒント:任意の $n \in \mathbb{N}$ と $A \subset \mathbb{N}$ について $\{n\} \times A \in \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$.)
- (2) $(\mu \otimes \mu)(E) = \#E$ を示せ.

問B-1

 $\mathcal{B}(\mathbb{R}^2) \subset \mathcal{L}(\mathbb{R}) \otimes \mathcal{L}(\mathbb{R})$ を示せ.

 $(ヒント:\mathbb{R}^2$ の任意の開集合 U は開区間の直積を可算個用いて

$$U = \bigcup_{i=1}^{\infty} (a_i, b_i) \times (c_i, d_i)$$

という形に表せる.)

問 B-2

 $(X_1,\mathcal{M}_1),\,(X_2,\mathcal{M}_2)$ を可測空間とする. 以下では $(X_1\times X_2,\mathcal{M}_1\otimes\mathcal{M}_2)$ が「積」としてふさわしい性質を持つことを確かめよう.

- (1) $\pi_1: (X_1 \times X_2, \mathcal{M}_1 \otimes \mathcal{M}_2) \to (X_1, \mathcal{M}_1)$ を $\pi_1(x, y) := x$ で定めるとき, π_1 は可測写像であることを示せ.
- (2) π_1 に加えて π_2 : $(X_1 \times X_2, \mathcal{M}_1 \otimes \mathcal{M}_2) \to (X_2, \mathcal{M}_2)$ を $\pi_2(x, y) := y$ で定める.このとき,任意の可測空間 (Z, \mathcal{N}) と可測写像

$$f: (Z, \mathcal{N}) \to (X_1, \mathcal{M}_1)$$

 $g: (Z, \mathcal{N}) \to (X_2, \mathcal{M}_2)$

に対し可測写像 $\phi_{f,q}:(Z,\mathcal{N})\to (X_1\times X_2,\mathcal{M}_1\otimes\mathcal{M}_2)$ で

$$f = \pi_1 \circ \phi_{f,g}$$
$$g = \pi_2 \circ \phi_{f,g}$$

となるものが一意的に存在することを示せ.(ヒント: $\phi_{f,g}$ の可測性は $\{E\subset X_1\times X_2\mid \phi_{f,g}^{-1}(E)\in\mathcal{N}\}$ が $\mathcal{M}_1\times\mathcal{M}_2$ を含む σ -algebra であることを確かめて示す.)

問 B-3

非負値二重数列 a_{mn} $(m, n \in \mathbb{N})$ について考える.

(1) 一般に

$$\sup_{m} \left(\inf_{n} a_{mn} \right) \le \inf_{n} \left(\sup_{m} a_{mn} \right)$$

であることを示せ、また不等式が成り立たない例を挙げよ、さらにそれを参考に、式の両辺 の極限が有限値に定まるにもかかわらず

$$\lim_{m \to \infty} \left(\lim_{n \to \infty} a_{mn} \right) \neq \lim_{n \to \infty} \left(\lim_{m \to \infty} a_{mn} \right)$$

となる二重数列を構成せよ.

(2) a_{mn} が m について単調増加であり, $c_{mn} := a_{mn} - a_{m-1,n}$ ($c_{1,n} := a_{1,n}$ とする)も n に ついて単調増加であれば

$$\lim_{m \to \infty} \left(\lim_{n \to \infty} a_{mn} \right) = \lim_{n \to \infty} \left(\lim_{m \to \infty} a_{mn} \right)$$

であることを示せ.